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Wo=-‐0.95±0.01	  
Wa=-‐0.5±0.1	  

	  
New	  physics!	  

	  
Do	  you	  believe	  the	  result?	  How	  about	  the	  

error	  bar?	  
From	  the	  2nd-‐ever	  photo-‐z-‐only	  
meeCng	  (Taipei,	  Sept.	  2013)	  



Need	  redshi-s 	  	  

•  Spectroscopic	  or	  photometric	  redshiIs	  (photo-‐zs).	  
	  
	  
	  
	  
•  For	  large	  surveys	  such	  as	  DES,	  PanSTARRS	  and	  LSST,	  photo-‐zs	  

are	  the	  only	  opCon	  (besides	  cross-‐correlaCon	  techniques).	  
	  

Accurate	  but	  
expensive	  

Innaccurate	  
but	  cheap	  
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•  Mistrust	  of	  photo-‐zs	  implies	  enormous	  costs	  to	  verify	  that	  

photo-‐zs	  are	  okay.	  

•  We	  cannot	  trust	  photo-‐zs	  because	  we	  don’t	  trust	  our	  
understanding	  of	  galaxy	  populaCons	  and	  distribuCons.	  

•  But	  galaxy	  formaCon	  studies	  require	  redshiIs.	  

•  Both	  have	  to	  be	  done	  simultaneously.	  

•  SimulaCons	  are	  the	  best	  framework	  with	  which	  to	  assess	  our	  
state	  of	  knowledge	  (and	  I’ll	  only	  trust	  cosmological	  results	  
from	  LSST	  when	  we	  can	  produce	  a	  photometric	  simulaCon	  
that	  closely	  resembles	  observaCons).	  	  





•  Probe	  strong	  
spectral	  features	  
(4000	  Å	  break)	  

•  Flux	  in	  each	  filter	  
depends	  on	  galaxy’s	  
type	  and	  redshiI.	  

Basics	  of	  photo-‐zs	  

magnitude	  =	  A	  –	  log(flux)	  
color	  =	  magnitude	  -‐	  magnitude	  

Terminology:	  
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Figure 14: Variance in red (left panel) and blue star-forming (right panel) galaxies. The solid curves show the
composites of galaxies classified according to the refined colour classes (redder to bluer). The shaded areas represent
the 0.5σ (red galaxies) and 1σ (blue galaxies) variations about the average. See the online edition for a colour version
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Figure 15: Comparision of the various averaging methods for red galaxies with measured Hα. We plot the spectrum
in the top panel for reference. The middle panel shows the difference between the robust average and the normal
average and the median, respectively. The bottom panel shows the number of spectra used to determine the averages
of the wavelength bins.
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•  A	  difficulty	  is	  that	  there	  is	  a	  
distribuCon	  of	  spectral	  
types.	  

•  And	  you	  have	  to	  separate	  
galaxies	  from	  stars	  and	  
QSOs	  (and	  from	  other	  
galaxies	  –	  deblending).	  

Basics	  of	  photo-‐zs	  
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Red	  Galaxies	  

Blue	  Galaxies	  



Basics	  of	  photo-‐z’s	  

Two	  classes	  of	  methods:	  
•  Template-‐fiOng:	  compare	  

observed	  fluxes	  with	  predicted	  
fluxes	  from	  library	  of	  galaxy	  
spectra.	  

	  
•  Training	  set:	  use	  subsample	  

with	  known	  redshiIs	  to	  “train”	  
flux-‐redshiI	  relaCon.	  

Courtesy	  M.	  Lima	  



Basics	  of	  photo-‐z’s	  

Photo-‐zs	  are	  oIen	  not	  very	  good.	  
Three	  steps	  before	  geeng	  to	  the	  
cosmology:	  
	  

•  Get	  photo-‐zs;	  
	  

•  EsSmate	  photo-‐z	  errors	  and	  
cull	  outliers;	  

	  

•  Calibrate	  error	  distribuSon,	  
e.g.	  P(zs|zp).	  
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Three	  steps	  before	  geeng	  to	  the	  
cosmology:	  
	  

•  Get	  photo-‐zs;	  spectra	  
recommended	  

	  

•  EsSmate	  photo-‐z	  errors	  and	  
cull	  outliers;	  spectra	  
recommended	  

	  

•  Calibrate	  error	  distribuSon,	  
e.g.	  P(zs|zp).	  spectra	  required	  

polynomial	  P(zs|zp)	  



Need	  spectra,	  so	  what? 	  	  

Good	  spectroscopic	  samples	  are	  hard	  to	  come	  by.	  Issues	  
•  SelecSon	  in	  observables:	  typically	  have	  many	  more	  bright	  

samples	  than	  faint	  samples.	  
•  SelecSon	  in	  non-‐observables:	  sample	  selected	  for	  a	  different	  

purpose	  with	  different	  bands	  (e.g.	  DEEP2	  survey).	  
•  Shot-‐noise:	  samples	  are	  small.	  
•  Sample	  variance:	  surveys	  are	  pencil-‐beam.	  
•  Spectroscopic	  failures:	  	  

–  Can’t	  get	  spectra	  for	  certain	  galaxies.	  
–  Wrong	  spectroscopic	  redshiIs.	  
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Cunha	  et	  al.	  2012a	  

Cunha	  et	  al.	  2012b	  	  



Weights	  

Oi 

Oj	  

Ok	  

N(z)	  

z	  

Match	  distribuCons	  of	  observables	  in	  
training	  (spectroscopic	  or	  simulated)	  sample	  
and	  photometric	  sample	  by	  assigning	  
weights	  to	  training	  set	  galaxies.	  

! 

Weight"
#photo

#train

! 

"i =
Ni

V
where 

:	  number	  of	  galaxies	  within	  ball	  
	  	  of	  volume	  V.	  

! 

Ni

The	  radius	  of	  the	  ball	  is	  determined	  by	  the	  distance	  
to	  100th	  nearest	  neighbor	  in	  the	  training	  set	  in	  space	  
of	  observables	  (colors	  and	  magnitudes).	  
	  
AssumpSon:	  Training	  set	  is	  locally	  representaCve	  of	  
photometric	  set.	  
Is	  that	  true?	  Yes,	  if	  differences	  in	  selecCon	  are	  only	  
in	  observable	  space.	  
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Cunha	  et	  al.	  2012b	  	  



•  Study	  Dark	  Energy	  using	  	  
	  	  	  	  4	  complementary	  techniques:	  
	  	  	  	  	  	  	  	  I.	  Cluster	  Counts	  
	  	  	  	  	  	  II.	  Weak	  Lensing	  
	  	  	  	  	  	  III.	  Baryon	  AcousCc	  OscillaCons	  
	  	  	  	  	  	  IV.	  Supernovae	  
	  

•	  	  	  	  Two	  mulCband	  surveys:	  
	  	  	  	  	  	  	  	  	  Main:	  5000	  deg2	  ≈	  5	  (h-‐1Gpc)3	  

	  	   	  	   	  300	  million	  galaxies	  
	  	   	  g,	  r,	  i,	  z,	  Y	  to	  24th	  mag	  

	  	  	  	  	  	  	  SNe:	  15	  deg2	  repeat	  
	  

•	  	  	  	  Build	  new	  3	  deg2	  FoV	  camera	  	  
	  	  	  	  	  	  	  and	  Data	  management	  sytem	  in	  

Blanco	  4-‐m	  telescope	  
	  	  	  	  	  	  Survey	  2012-‐2017	  (525	  nights)	  
	  	  	  	  	  	  Camera	  available	  for	  community	  

use	  the	  rest	  of	  the	  Cme	  (70%)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Blanco 4-meter at CTIO 
www.darkenergysurvey.org	  

The	  Dark	  Energy	  Survey	  



Biases	  in	  w	  from	  error	  in	  P(zs|zp)	  esSmaSon	  

•  Fixed	  0.01	  error	  in	  P(zs|zp)	  
esCmaCon,	  i.e,	  ΔP(zs|zp)
=0.01	  at	  a	  single	  bin.	  

•  For	  DES	  shear-‐shear	  
analysis.	  

FracConal	  bias	  in	  w	  Bernstein	  &	  Huterer	  (2010)	  
Hearin	  et	  al.	  (2010)	  
Cunha	  et	  al.	  2012a	  



Biases	  due	  to	  sample	  variance	  
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Figure 1. Normalized spectroscopic redshift distribution for the
full data. The red (light gray) error bars show the 1-σ variability
in the redshift distribution for contiguous 1 deg2 angular patches.
The blue (dark gray) error bars show the variability in the redshift
distribution assuming random samples of with the same mean
number of objects as the 1 deg2 patches. We assume that only a
25% random subsample of each patch is targeted for spectroscopy,
yielding about 1.2× 104 galaxies per patch on average.

= δCtrain
β − δCphot

β (17)

where the second line trivially follows given that the true,
underlying power spectra are the same for the training and
photometric galaxies. All of the shear power spectra biases
δC can straightforwardly be evaluated from Eq. (11) by us-
ing the contamination coefficients for the training and pho-
tometric fields, respectively. Therefore, the effective error in
the power spectra is equal to the difference in the biases of
the training set spectra (our estimates of the biases in the
observable quantities) and the photometric set spectra (the
actual biases in the observables).

5 RESULTS

We present our results in this section. In Sec. 5.1 we com-
pare the effects of sample variance on the spectroscopic red-
shifts and the photometric observables, concluding that the
effects on the redshifts are dominant. We then discuss the
impact of sample variance on photo-z training in Sec. 5.2,
finding that the effect on the photo-z scatter statistics is
negligible, but that it does introduce variability in the esti-
mate of the overall redshift distribution. The effect is much
smaller for photo-z methods that use a fitting-function, such
as the NNP, but pronounced for the density-based estima-
tors such as the p(z)w. In Sec. 5.3, we look at the impact of
sample variance in calibration of the photo-z error distribu-
tions, finding that it dominates shot-noise for the scenarios
we simulate. Finally, in Sec. 5.4 we examine the dependence
of our results on the number of tomographic bins used.

5.1 Spectroscopic redshift variance vs. photo-z
variance

Large-scale structure not only correlates the spatial distribu-
tion of galaxies, but also correlates the distribution of galaxy
types, colors, and other properties. For example, if there is

a big galaxy cluster in some patch on the sky, red galax-
ies will be over-represented in that patch. Since red galaxies
typically have better photo-z’s than blue galaxies, this LSS
fluctuation could result in additional bias in photo-z train-
ing and error calibration. Because this extra systematic is
indirectly caused by the existence of large-scale structures,
we refer to it as sample variance of the photo-zs, to differ-
entiate it from sample variance purely in galaxy positions,
hereafter sample variance in the spec-zs.

We use the conditional probabilities P (zp|zs) and
P (zs|zp) to disentangle the two sources of sample variance.
The key point is that P (zs|zp) is sensitive to changes in the
zs distribution, but not in the zp distribution. Conversely,
P (zp|zs) is only sensitive to changes in the zp distribution,
but not in zs (one can be convinced of this point by con-
structing simple toy examples).

We estimate the variability of the error distributions
across patches by the standard deviation about the mean.
For P (zp|zs) we define

σ(P (zp|zs)) =

��
patches

�
P (zp|zs)− P (zp|zs)

�2

Npatches
(18)

where P (zp|zs) is the mean ’leakage’ across the patches. We
equivalently define the quantity σ(P (zs|zp)). We are inter-
ested in the increase in variability relative to the case of a
random subsample.

In the top panel of Fig. 2 we show the ratio of
σ(P (zp|zs)) calculated for the 0.25 deg2 LSS patches and the
corresponding 0.25 deg2 random-equivalent patches. In the
bottom panel of the same figure, we show the correspond-
ing ratio for σ(P (zs|zp)). We perform this test using the
template photo-zs so as to isolate the importance of sample
variance on the calibration of the error matrices. Comparing
the two plots, we see that sample variance of the photo-z’s
does not increase appreciably between the random and the
LSS patches, i.e. the ratios in each pixel are very close to
unity. The sample variance of the spec-zs, on the other hand,
shows marked increase, as was already apparent from Fig. 1.

5.2 Sample variance in photo-z training

In this section we examine the effects of sample variance in
the training of photo-zs finding that the commonly reported
scatter in the photo-z estimation is affected by the shot noise
but not by sample variance.

Table 1 shows the photo-z scatter of the photometric
sample for the polynomial method as well as the width of
the p(z)ws, averaged over all galaxies and all training iter-
ations. The photo-z scatter is defined as the standard de-
viation (around zero) of the P (zp − zs) distribution. The
average mean width of the p(z)w is defined as the average,
over all training iterations, of the mean 1-σ width of the
p(z)ws of the galaxies in the photometric sample. Compar-
ison of the corresponding ’LSS’ and ’Random’ columns in
the Table shows that large-scale structure does not affect
the photo-z or p(z)w statistics significantly. The training set
size is important, however, as larger training sets have lower
shot noise. For the polynomial photo-z’s, we see a 12% degra-
dation in the scatter between the 6 deg2 and 0.25 deg2 cases.
The p(z)ws are much more sensitive, with a degradation of
63%.

c� 0000 RAS, MNRAS 000, 000–000

Sample	  variance	  

For	  typical	  exisCng	  	  
spectroscopic	  samples,	  
sample	  variance	  is	  significantly	  
larger	  than	  shot	  noise.	  

Cunha,	  Huterer,	  Busha	  &	  
Wechsler	  	  
arXiv:	  1109:5691	  



Sample	  variance	  in	  photo-‐zs	  and	  zspecs 	  	  

1	   1	   2	  

1	   6	   1	  

2	   1	   1	  

Example:	  	  

DistribuSon	  of	  galaxies	  in	  
photometric	  sample:	  	  

zspec	  	  

zphot	  	  

1	   1	   4	  

1	   6	   2	  

2	   1	   2	  

zspec	  	  

zphot	  	  

DistribuSon	  of	  galaxies	  in	  
calibraSon	  sample:	  	  

LSS	  fluctuaSon!!!	  



Sample	  variance	  in	  photo-‐zs	  and	  zspecs 	  	  

1	   1	   2	  

1	   6	   1	  

2	   1	   1	  

photometric	  
sample:	  	  

Rows:	  
zspec	  	  

Colums:	  
zphot	  	  

calibraSon	  
sample:	  	  

0.25	   .125	   0.50	  

0.25	   0.75	   0.25	  

0.50	   .125	   0.25	  

0.25	   0.25	   0.50	  

.125	   0.75	   .125	  

0.50	   0.25	   0.25	  

1	   1	   4	  

1	   6	   2	  

2	   1	   2	  

.167	   .167	   .667	  

.111	   .667	   .222	  

0.4	   0.2	   0.4	  

P(zp|zs)	  	  

P(zs|zp)	  	  

0.25	   .125	   0.50	  

0.25	   0.75	   0.25	  

0.50	   .125	   0.25	  



Sample	  variance	  in	  photo-‐zs	  and	  zspecs 	  	  

1	   1	   2	  

1	   6	   1	  

2	   1	   1	  

photometric	  
sample:	  	  

Rows:	  
zspec	  	  

Colums:	  
zphot	  	  

calibraSon	  
sample:	  	  

0.25	   .125	   0.50	  

0.25	   0.75	   0.25	  

0.50	   .125	   0.25	  

0.25	   0.25	   0.50	  

.125	   0.75	   .125	  

0.50	   0.25	   0.25	  

1	   1	   4	  

1	   6	   2	  

2	   1	   2	  

.167	   .167	   .667	  

.111	   .667	   .222	  

0.4	   0.2	   0.4	  

P(zp|zs)	  	  

P(zs|zp)	  	  

0.25	   .125	   0.50	  

0.25	   0.75	   0.25	  

0.50	   .125	   0.25	  

Conclusion:	  	  
	  
P(zs|zp)	  is	  sensiCve	  to	  zspec	  fluctuaCons,	  but	  P(zp|zs)	  
is	  not.	  Conversely,	  only	  P(zp|zs)	  is	  sensiCve	  to	  zphot	  
fluctuaCons.	  
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Example:	  Patch	  37	  
An	  example:	  
•  Errors	  in	  N(zspec)	  translate	  into	  errors	  in	  	  

the	  error	  matrix	  esCmaCon.	  

	  	  

ΔP(zs|zp)	  =	  P(zs|zp)phot	  -‐	  P(zs|zp)train	  
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Figure 8. Relation between number of independent patches and galaxies observed per patch so that the calibration bias will yield a

bias/error ratio in w that is less than 1.0 with 95% probability. We consider three different telescope apertures based on capabilities of

existing telescopes: 1/4 deg
2
(solid black), 1/8 deg

2
(solid red) and 1/32 deg

2
(or 112.5 arcmin2; blue). The first two scenarios correspond

to the optimistic and pessimistic assumptions about the effective observing area of Magellan. The VIMOS-VLT instrument could observe

about 1/16 deg
2
. The diagonal light gray lines indicate contours of fixed total number of galaxies, while the vertical band indicates

typical number of galaxies per observed patch possible with a single pointing of Magellan or VLT. For a fixed number of galaxies per

patch, the total number of patches required is higher for a smaller patch area in order to compensate for the increased sample variance

per patch. Similarly, if the survey can observe more galaxies in each patch, then the total number of patches obviously decreases since

fewer patches will be required to calibrate the shot noise, at the expense of increasing the total number of galaxies required.

Ωm = 0.25 and σ8 = 0.8 in a 1Gpc/h box with 11203 par-
ticles. The lightcone output necessary for the ADDGALS
algorithm was created by pasting together 33 snapshots in
the redshift range z = 0− 1.33. This results in a 220 sq de-
gree lightcone whose orientation was selected such that there
are no particle replications in the inner ∼ 100 sq. deg. and
minimal replications in the outer regions.

The ADDGALS algorithm used to create the galaxy
distribution consists of two steps: galaxies based on an in-
put luminosity function are first assigned to particles in
the simulated lightcone, after which multi-band photome-
try is added to each galaxy using a training set of observed
galaxies. For the first step, we begin by defining the rela-
tion P (δdm|Mr, z) — the probability that a galaxy with
magnitude Mr a redshift z resides in a region with local
density δdm, defined as the radius of a sphere containing
1.8×1013h−1M⊙ of dark matter. This relation can be tuned
to reproduce the luminosity-dependent galaxy 2-point func-
tion by using a much higher resolution simulation combined
with the technique known as subhalo abundance matching.
This is an algorithm for populating very high resolution dark
matter simulations with galaxies based on halo and subhalo
properties that accurately reproduces properties of the ob-
served galaxy clustering (Conroy et al. 2006; Wetzel and
White 2010; Behroozi et al. 2010; Busha et al. 2011a). The
relationship P (δdm|Mr, z) can be measured directly from the
resulting catalog. Once this probability relation has been de-
fined, galaxies are added to the simulation by integrating a

(redshift dependent) r-band luminosity function to generate
a list of galaxies with magnitudes and redshifts, selecting
a δdm for each galaxy by drawing from the P (δdm|Mr, z)
distribution, and attaching it to a simulated dark matter
particle with the appropriate δdm and redshift. The advan-
tage of ADDGALS over other commonly used approaches
based on the dark matter halos is the ability to produce sig-
nificantly deeper catalogs using simulations of only modest
size. When applied to the present simulation, we populate
galaxies as dim as Mr ≈ −16, compared with the Mr ≈ −21
completeness limit for a standard halo occupation (HOD)
approach.

While the above algorithm accurately reproduces the
distribution of satellite galaxies, central objects require ex-
plicit information about the mass of their host halos. Thus,
for halos larger than 5×1012h−1M⊙, we assign central galax-
ies using the explicit mass-luminosity relation determined
from our calibration catalog. We also measure δdm for each
halos, which is used to draw a galaxy from the integrated lu-
minosity function with the appropriate magnitude and den-
sity to place at the center.

For the galaxy assignment algorithm, we choose a lu-
minosity function that is similar to the SDSS luminosity
function as measured in Blanton et al. (2003), but evolves
in such a way as to reproduce the higher redshift obser-
vations of the NDWFS and DEEP2 observations. We use
a Schechter Function with φ∗ = 1/81 × 10−2z/3, M∗ =

c� 0000 RAS, MNRAS 000, 000–000

Survey	  Calculator	  

Magellan	  

VLT	  

Cunha,	  Huterer,	  Busha	  &	  Wechsler	  (2012a)	  
Assuming	  fiducial	  σ(w)=0.035,	  
and	  perfect	  spectroscopic	  
selecCon.	  



Do	  we	  really	  need	  all	  those	  patches?	  



w-‐biases	  for	  each	  patch	  	  

10 Cunha et al.
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Figure 8. Fractional biases inw (i.e. the bias/error ratios inw) for the differ-
ent 1 deg2 patches used to train and/or calibrate the photometric redshifts.
The top panel shows that errors in different photo-z methods produce corre-
lated biases in the equation of statew in the presence of the LSS. The x-axis
indicates the fractional bias in w for the polynomial estimator, while the y-
axis shows the corresponding bias for template estimator (black points) and
the p(z)w estimator (green points). The bottom panel shows the random
equivalent patches where the correlation is much less pronounced.

mator is not as sensitive to shot noise. Moreover, the p(z)w method
is the only method that yields a perfect reconstruction of the over-
all redshift distribution in the limit of large area of spectroscopic
samples.
• The polynomial-fitting method appears to have slightly larger

mean fractional bias than the p(z)w and template-fitting in the
cases shown in Table 2. However, the mean fractional bias is sig-
nificantly smaller than the σ68 width in all cases. In addition, the
polynomial technique outperforms the other methods in almost all
scenarios, suggesting that use of a training set yields improvements
superior to any bias introduced by using the same patch to train
and calibrate the photo-zs. We believe that the conclusion that one
can use the same sample to train and calibrate photo-zs should hold
for other training-set-dependent photo-z techniques provided the
method has some control for the degrees of freedom it utilizes and
thereby avoid biases due to over-fitting.

5.4 Dependence on simulations and parametrizations

In this section we discuss some of our choices of survey param-
eters.

Bias in w

6 deg2 LSS Random

Technique δw/σ(w) σ68 ∆χ2
med δw/σ(w) σ68 ∆χ2

med

Template 0.04 2.56 3.14 0.04 0.44 0.14

Polynomial -0.07 1.53 2.04 -0.04 0.39 0.12

p(z)w 0.05 2.33 2.56 0.07 0.31 0.10

1 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template -0.04 3.75 7.36 0.01 0.92 0.75

Polynomial -0.19 2.96 4.74 0.00 0.93 0.64

p(z)w -0.01 3.99 9.05 0.029 0.78 0.50

1/4 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template 0.03 4.61 16.4 -0.15 1.9 2.9

Polynomial -0.11 3.99 10.3 -0.17 1.7 2.2

p(z)w 0.07 5.88 32.3 -0.10 2.0 3.0

Table 2. Mean fractional bias in w (i.e. mean of δw/σ(w)) and σ68 (i.e.
width of the |δw|/σ(w) distribution) for the different techniques, assuming
patches of area 6, 1, 1/4 deg2 for training and calibration or a random sub-
sample with the same number of galaxies. The ∆χ2

med column indicates
the median value (among all patches) of ∆χ2

tot of the fit over all cosmo-
logical parameters; see Eq. (20).

5.4.1 Dependence on intrinsic ellipticity

For most of the results shown on this paper, we have assumed
the optimistic value of 〈γ2

int〉
1/2 = 0.16 for the rms intrinsic el-

lipticity. The effective intrinsic ellipticity is somewhat difficult
to estimate before the survey has started taking data, and there
is a range of forecasted values in the literature; for example,
〈γ2

int〉
1/2 = 0.23 (Laszlo et al. 2011; Kirk et al. 2011). We tested

using rms ellipticity of 0.26 with the template photo-zs, and
found that the change affects primarily the fiducial constraints,
degrading e.g. marginalized error in w by a factor of ∼ 1.6
(from 0.035 to 0.055). The overall degradation in the σ68 of the
distribution of |δw|/σ(w) degrades by a factor of ∼ 1.9 for the
LSS cases and ∼ 1.6 for the random equivalent cases. Since
we find that the intrinsic galaxy ellipticity primarily affects the
fiducial cosmological parameter errors (i.e. σ(w), rather than
the systematic bias δw), we use it as a control parameter to
vary our baseline cosmological parameter error assumptions8.
Henceforth, we adopt 〈γ2

int〉
1/2 = 0.16 as the optimistic case for

the dark energy fiducial errors (which leads to more challeng-
ing follow-up requirements), and 〈γ2

int〉
1/2 = 0.26 as the pes-

8 Note, it would not be hard to come up with other ways to improve the
fiducial constraints, such as adding other 2-pt correlations to the analysis,
or including magnification. Conversely, one could add intrinsic alignments
and other sources of errors to degrade the constraints.

c© 0000 RAS, MNRAS 000, 000–000
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•  What	  if	  the	  patches	  were	  not	  chosen	  randomly?	  

•  If	  we	  are	  lucky,	  a	  single	  patch	  may	  result	  in	  very	  small	  bias.	  
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Figure 8. Fractional biases inw (i.e. the bias/error ratios inw) for the differ-
ent 1 deg2 patches used to train and/or calibrate the photometric redshifts.
The top panel shows that errors in different photo-z methods produce corre-
lated biases in the equation of statew in the presence of the LSS. The x-axis
indicates the fractional bias in w for the polynomial estimator, while the y-
axis shows the corresponding bias for template estimator (black points) and
the p(z)w estimator (green points). The bottom panel shows the random
equivalent patches where the correlation is much less pronounced.

mator is not as sensitive to shot noise. Moreover, the p(z)w method
is the only method that yields a perfect reconstruction of the over-
all redshift distribution in the limit of large area of spectroscopic
samples.
• The polynomial-fitting method appears to have slightly larger

mean fractional bias than the p(z)w and template-fitting in the
cases shown in Table 2. However, the mean fractional bias is sig-
nificantly smaller than the σ68 width in all cases. In addition, the
polynomial technique outperforms the other methods in almost all
scenarios, suggesting that use of a training set yields improvements
superior to any bias introduced by using the same patch to train
and calibrate the photo-zs. We believe that the conclusion that one
can use the same sample to train and calibrate photo-zs should hold
for other training-set-dependent photo-z techniques provided the
method has some control for the degrees of freedom it utilizes and
thereby avoid biases due to over-fitting.

5.4 Dependence on simulations and parametrizations

In this section we discuss some of our choices of survey param-
eters.

Bias in w

6 deg2 LSS Random

Technique δw/σ(w) σ68 ∆χ2
med δw/σ(w) σ68 ∆χ2

med

Template 0.04 2.56 3.14 0.04 0.44 0.14

Polynomial -0.07 1.53 2.04 -0.04 0.39 0.12

p(z)w 0.05 2.33 2.56 0.07 0.31 0.10

1 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template -0.04 3.75 7.36 0.01 0.92 0.75

Polynomial -0.19 2.96 4.74 0.00 0.93 0.64

p(z)w -0.01 3.99 9.05 0.029 0.78 0.50

1/4 deg2 a.addddaaaaaaa aaaddddaaaaaa

Template 0.03 4.61 16.4 -0.15 1.9 2.9

Polynomial -0.11 3.99 10.3 -0.17 1.7 2.2

p(z)w 0.07 5.88 32.3 -0.10 2.0 3.0

Table 2. Mean fractional bias in w (i.e. mean of δw/σ(w)) and σ68 (i.e.
width of the |δw|/σ(w) distribution) for the different techniques, assuming
patches of area 6, 1, 1/4 deg2 for training and calibration or a random sub-
sample with the same number of galaxies. The ∆χ2

med column indicates
the median value (among all patches) of ∆χ2

tot of the fit over all cosmo-
logical parameters; see Eq. (20).

5.4.1 Dependence on intrinsic ellipticity

For most of the results shown on this paper, we have assumed
the optimistic value of 〈γ2

int〉
1/2 = 0.16 for the rms intrinsic el-

lipticity. The effective intrinsic ellipticity is somewhat difficult
to estimate before the survey has started taking data, and there
is a range of forecasted values in the literature; for example,
〈γ2

int〉
1/2 = 0.23 (Laszlo et al. 2011; Kirk et al. 2011). We tested

using rms ellipticity of 0.26 with the template photo-zs, and
found that the change affects primarily the fiducial constraints,
degrading e.g. marginalized error in w by a factor of ∼ 1.6
(from 0.035 to 0.055). The overall degradation in the σ68 of the
distribution of |δw|/σ(w) degrades by a factor of ∼ 1.9 for the
LSS cases and ∼ 1.6 for the random equivalent cases. Since
we find that the intrinsic galaxy ellipticity primarily affects the
fiducial cosmological parameter errors (i.e. σ(w), rather than
the systematic bias δw), we use it as a control parameter to
vary our baseline cosmological parameter error assumptions8.
Henceforth, we adopt 〈γ2

int〉
1/2 = 0.16 as the optimistic case for

the dark energy fiducial errors (which leads to more challeng-
ing follow-up requirements), and 〈γ2

int〉
1/2 = 0.26 as the pes-

8 Note, it would not be hard to come up with other ways to improve the
fiducial constraints, such as adding other 2-pt correlations to the analysis,
or including magnification. Conversely, one could add intrinsic alignments
and other sources of errors to degrade the constraints.
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GeOng	  lucky	  with	  cosmic	  variance	  

•  What	  if	  the	  patches	  were	  not	  chosen	  randomly?	  

•  If	  we	  are	  lucky,	  a	  single	  patch	  may	  result	  in	  very	  small	  bias.	  

•  QuesSon:	  how	  do	  we	  find	  that	  patch?	  



GeOng	  lucky	  with	  cosmic	  variance	  

•  Idea:	  The	  patches	  that	  look	  most	  similar	  to	  the	  survey	  
average,	  will	  produce	  the	  smallest	  biases	  if	  used	  for	  
calibraCon.	  

•  QuesSon:	  What	  do	  you	  mean	  by	  most	  similar?	  



Choosing	  the	  most	  similar	  patches	  

Several	  opSons:	  
•  1-‐point	  staSsScs	  (e.g.	  Redshi-	  distribuSon)	  

–  Rms	  (χ2)	  
–  Kolmogorov-‐Smirnov	  (KS)	  –	  more	  sensiSve	  to	  biases.	  

•  2-‐point	  staSsScs	  (e.g.	  correlaSon	  funcSon)	  

Based	  on:	  
•  Photometric	  properSes	  
•  Spectroscopic	  properSes	  (perhaps	  of	  a	  brighter	  sample)	  



The	  simulaSons	  

•  8000	  sq.	  degrees	  
•  DES	  depth	  (griz	  bands),	  cut	  at	  i<23.5	  
•  BPz	  photo-‐zs	  (for	  plots	  shown).	  
	  	  
•  Photo-‐z	  stats	  (prewy	  awful,	  at	  present	  –	  more	  on	  this	  later):	  

–  σ=	  0.2	  
–  σ68=	  0.13	  



Procedure	  

•  Split	  simulaCon	  into	  thousands	  of	  patches	  of	  area	  1/8	  sq.	  deg	  
–	  comparable	  to	  aperture	  of	  Magellan.	  

•  To	  improve	  staCsCcs,	  generate	  millions	  of	  sets	  of	  20	  patches,	  
randomly	  picked.	  

•  Look	  at	  fracSonal	  biases	  in	  w	  from	  using	  each	  of	  the	  sets	  of	  
patches.	  

•  Look	  for	  correlaCons	  between	  biases	  in	  w	  and	  how	  well	  N(z)	  
of	  patches	  reproduces	  the	  simulaCon	  mean.	  



Spectroscopic	  case	  
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DistribuCon	  of	  patch-‐sets	  in	  
KS	  –	  w-‐bias	  space.	  



Spectroscopic	  case	  
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Parenthesis:	  How	  do	  photo-‐z	  errors	  affect	  results?	  

•  Effects	  on	  staCsCcal	  constraints	  for	  fixed	  calibraCon:	   	  	  
–  Square-‐root	  of	  scawer	  (Zhaoming	  Ma,	  Fisher	  matrix,	  depends	  on	  

priors)	  

•  Effects	  on	  calibraCon	  for	  fixed	  staCsCcal	  constraints:	  
–  Shot-‐noise	  dominated	  limit:	  No	  dependence,	  believe	  it	  or	  not.	  
–  Sample-‐variance	  dominated	  limit:	  Square-‐root	  of	  scaoer.	  
	  

•  Impact	  on	  lucky-‐patch	  selecCon:	  
–  ???	  –	  at	  least	  square-‐root	  of	  scawer.	  

	   	  	  



Conclusions	  

•  Lucky	  patch	  selecCon	  is	  free	  and	  reduces	  calibraCon	  
requirements.	  

•  Can	  this	  approach	  bias	  things	  in	  any	  way?	  
•  What	  is	  the	  best	  1-‐point	  staCsCc	  and	  the	  best	  tracer	  

populaCon?	  
•  How	  much	  will	  2-‐point	  staCsCcs	  contribute?	  



Recap	  

Good	  spectroscopic	  samples	  are	  hard	  to	  come	  by.	  SoluSons	  
•  SelecSon	  in	  observables:	  e.g.	  Weights	  (Lima,	  Cunha	  et	  al	  2008)	  
•  SelecSon	  in	  non-‐observables:	  Don’t	  do	  it.	  
•  Shot-‐noise:	  need	  many	  galaxies	  
•  Sample	  variance:	  need	  lots	  of	  area.	  
•  Spectroscopic	  failures:	  	  

–  Can’t	  get	  spectra	  for	  certain	  galaxies.	  
–  Wrong	  spectroscopic	  redshi-s.	  

Cunha	  et	  al.	  2012a	  

Cunha	  et	  al.	  2012b	  	  



Spectroscopic	  failures	  



Spectroscopic	  simulaSons	  

•  N-‐body	  +	  photometry	  

	  
	  
	  
	  
	  
	  
•  Spectroscopy:	  

–  Simulated	  spectra:	  K-‐correct	  templates	  +	  resoluCon	  +	  noise	  
–  Spectroscopic	  redshi-s:	  IRAF-‐rvsao	  on	  1-‐D	  simulated	  spectra	  

	  	  



Completeness	  issues 	  	  

•  Spectroscopic	  samples	  are	  very	  
incomplete	  

	  
Case	  study:	  SimulaCons	  of	  
DES	  photometry	  +	  VVDS-‐like	  spec-‐z’s	  
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures

c© 0000 RAS, MNRAS 000, 000–000

SSR:	  Spectroscopic	  Success	  Rate	  
	  
True	  SSR:	  fracCon	  of	  galaxies	  with	  correct	  
redshiIs.	  
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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SSR:	  Spectroscopic	  Success	  Rate	  
	  
True	  SSR:	  fracCon	  of	  galaxies	  with	  correct	  
redshiIs.	  
	  
Observed	  SSR:	  FracCon	  of	  galaxies	  with	  
redshiI	  confidence	  above	  some	  threshold	  (e.g.	  
Q>4).	  
	  
Q:	  Strength	  of	  correlaCon	  between	  observed	  
spectra	  and	  best-‐fieng	  spectrum	  in	  a	  template	  
library.	  	  

Cannot	  use	  spectroscopic	  sample	  for	  calibraCon	  of	  
photo-‐zs	  of	  photometric	  sample	  if	  selecCon	  is	  different.	  
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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Figure 4. Leakage matrices (P (zspec|ztrue)) for the training sets selected by the cuts R > 4.0 (left panel), R > 5.0 (center panel), and R > 6.0 (right
panel). The spectroscopic redshifts were calculated using 16,200 secs exposures with the full set of 11 templates in the spectroscopic pipeline.
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Figure 2. Top panel: True spectroscopic success rate (SSRT), defined as
fraction of correct redshifts as a function of true redshift. Right panel:
Observed SSR (SSRO), defined as fraction of galaxies with correlation
R ! 6.0. Both results assume 16200 secs of integration time with the 3
additional templates.
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5.2 Where do the wrong redshifts go?

We show the spectroscopic leakage matrices (P (zspec|ztrue)) for
several cuts in theR statistic for our fiducial scenario in Fig. 4. The
spectroscopic redshift errors, which correspond to any departures
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SSR:	  Spectroscopic	  Success	  Rate	  
	  
True	  SSR:	  fracCon	  of	  galaxies	  with	  correct	  
redshiIs.	  
	  
Observed	  SSR:	  FracCon	  of	  galaxies	  with	  
redshiI	  confidence	  above	  some	  threshold	  (e.g.	  
Q>4).	  
	  
Q:	  Strength	  of	  correlaCon	  between	  observed	  
spectra	  and	  best-‐fieng	  spectrum	  in	  a	  template	  
library.	  	  

Cannot	  use	  spectroscopic	  sample	  for	  calibraCon	  of	  
photo-‐zs	  of	  photometric	  sample	  if	  selecCon	  is	  different.	  

In	  simulaCons,	  neural	  network	  
approach	  was	  able	  to	  match	  
spectroscopic	  selecCon	  in	  
photometric	  sample.	  



SelecSon	  matching	  with	  neural	  net	  

•  Have	  a	  redshi-	  confidence	  (Q)	  for	  galaxies	  in	  spectroscopic	  
sample.	  

•  Use	  neural	  net	  to	  find	  a	  relaCon	  between	  Q	  and	  photometric	  
observables	  (magnitudes).	  This	  is	  Qest.	  

•  Qest	  can	  be	  calculated	  for	  all	  galaxies	  in	  the	  spectroscopic	  and	  
photometric	  samples.	  
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Constraints on w (template-fitting photo-zs)

16200 secs bias(w)

Selection Gal. Frac. SSRT (%) σ(w) ztrue zspec

Qest > 1.5 0.75 91.4 0.07 0.004 - 0.52

Qest > 2.5 0.59 97.8 0.09 0.002 - 0.13

Qest > 3.5 0.46 99.6 0.10 -0.001 - 0.02

48600 secs

Qest > 1.5 0.96 93.6 0.06 0.004 - 0.39

Qest > 2.5 0.81 97.8 0.07 0.005 - 0.15

Qest > 3.5 0.66 99.6 0.08 0.003 - 0.03

Table 2. Statistical and systematical errors in w for the different samples.
The bias results shown used the template-fitting photo-zs. The Galax. Frac.
column indicates the fraction of galaxies from the full data set that passed
the selection cut.

in w are negligible compared to the statistical constraints, demon-
strating that the neural network can accurately match the spectro-
scopic selection to the photometric sample. The table also shows
the fraction of galaxies surviving the selection cuts. For example,
for the 16200 secs exposures, we see that the Qest > 3.5 cut re-
moves more than half of the sample, which results in nearly a factor
of two degradation in the statistical constraints relative to what is
achievable with the full sample (σ(w) = 0.055). The degradation
is so severe because most of the objects removed by the cut are at
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastating to the
weak lensing constraints. The bias in w is, perhaps, tolerable only
in the Qest > 3.5 cases. In the other scenarios one can see that the
biases in w are greater than the 1σ constraints even with close to
98% correct redshifts (SSRT ! 0.98).

Comparing the 48600 secs and 16200 secs results we see that
the magnitude of the biases in w are set entirely by the spectro-
scopic success rate (SSRT), regardless of the level of complete-
ness. This is another reminder that the emphasis must be on accu-
racy over completeness.

We investigated the dependence of the results on the photo-z
estimator by performing the WL analysis with the neural network
photo-zs instead of the template photo-zs. The resulting biases inw
are shown in the third column of Table 3. Comparing to the fourth
column where we reproduce the template photo-z biases from Ta-
ble 2, we see that the magnitude of the bias is very similar for the
two photo-z estimators, despite difference in the photo-z error dis-
tributions of both (see e.g. Cunha et al. 2012).

We also tested the possibility of decreasing the biases by
culling photo-z outliers. In the presence of wrong spectroscopic
redshifts, the culling could remove not only catastrophic photomet-
ric redshifts, but perhaps also identify the wrong zspecs. We used
the nearest-neighbor error estimator, NNE (Oyaizu et al. 2008a), to
cull 10% of the sample selected as the galaxies with largest NNE

error, (eNNE). Since the fraction of objects to be culled was fixed,
the value of the eNNE cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columns of Ta-
ble 3. For simplicity, we did not recalculate the fiducial constraints
when deriving the biases for the culled samples; given the quali-
tative nature of this analysis, this is a reasonable approximation.
The NNE cut seems quite effective for the neural network photo-zs,
typically reducing the biases by half. When the NNE culling was
applied to the template-fitting estimator, the effect was negligible
for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifying spectro-
scopic outliers when a training set based procedure is used. This
is by no means obvious since the NNE is very efficient at identi-
fying photo-z outliers even when template-fitting methods are used
(Oyaizu et al. 2008a). For comparison, we also tested the effect
of applying the same 10% cut using an error estimator from the
template-fitting code itself4. We find that the biases due to wrong
redshifts for theQest > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this error estimator
is also beneficial. In contrast, note that, in Cunha et al. (2012), we
found that culling based on photo-z error estimates had little impact
on cosmological biases.

Finally, we investigated the dependence of the results on the
settings of our spectroscopic pipeline, described in Sec. 3.1. We
find that our fiducial settings, despite giving the best high redshift
completeness, yielded the largest biases in w, shown in the Table
2. The different settings yielded consistent trends, and we focus on
one particular case, that highlights the importance of the pipeline
settings. The Original setting for the pipelinehad a factor of two
smaller bias for the Qest > 3.5 sample. In the Original setting,
recall that only 6 templates were used. As can be seen by compar-
ing the right plot in Fig. 4 with Fig. 5, the 3 additional templates
increased the redshift completeness above z > 1.4 but resulted
in leakage from the high ztrue bins to low zspec bins. In particu-
lar, some galaxies at ztrue ∼ 0.9 were assigned zspecs of ∼ 0.5
and ∼ 0.7. This failure mode was responsible for about 2/3 of the
increase in bias in going from the Original to the Fiducial setting.
The remainder of the difference was due to the fact that the Fiducial
setting uses czguess = 1.6 which has the effect of increasing the
probability that a galaxy will be assigned a high redshift. As a re-
sult, the Fiducial setting yields zspecs above 1.5 for several galaxies
with ztrue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because it leads to
the increase of the fraction of wrong redshifts which in turn implies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscopic and
photometric samples by culling the photometric sample. That is,
we selectively removed galaxies from the photometric sample so
that it statiscally matched, as closely as possible, the spectroscopic
sample. In this section we try a more agressive approach that allows
us to keep nearly the full photometric sample. Our technique is to
weight galaxies in the spectroscopic sample using the probwts
method of Lima et al. (2008) and Cunha et al. (2009), so that
the statistical properties of these weighted spectroscopic galaxies

4 The error estimate we use is the difference between the
Z BEST68 HIGH and Z BEST68 LOW outputs of the LePhare code.
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Case	  study:	  SimulaCons	  of	  	  
DES	  photometry	  +	  VVDS-‐like	  spec-‐z’s	  
	  

	  

R > 5.0

 0  0.4  0.8  1.2  1.6  2
ztrue

 0

 0.4

 0.8

 1.2

 1.6

 2

z s
pe

c

0

10-4

10-3

10-2

10-1

100

Q:	  cross-‐correlaCon	  
parameter	  (measures	  
redshiI	  confidence)	  

Cunha,	  Huterer,	  Lin,	  Busha,	  Wechsler	  et	  al,	  2012b	  	  

Q>3	  



Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements 9

Constraints on w (template-fitting photo-zs)

16200 secs bias(w)

Selection Gal. Frac. SSRT (%) σ(w) ztrue zspec

Qest > 1.5 0.75 91.4 0.07 0.004 - 0.52

Qest > 2.5 0.59 97.8 0.09 0.002 - 0.13

Qest > 3.5 0.46 99.6 0.10 -0.001 - 0.02

48600 secs

Qest > 1.5 0.96 93.6 0.06 0.004 - 0.39

Qest > 2.5 0.81 97.8 0.07 0.005 - 0.15

Qest > 3.5 0.66 99.6 0.08 0.003 - 0.03

Table 2. Statistical and systematical errors in w for the different samples.
The bias results shown used the template-fitting photo-zs. The Galax. Frac.
column indicates the fraction of galaxies from the full data set that passed
the selection cut.

in w are negligible compared to the statistical constraints, demon-
strating that the neural network can accurately match the spectro-
scopic selection to the photometric sample. The table also shows
the fraction of galaxies surviving the selection cuts. For example,
for the 16200 secs exposures, we see that the Qest > 3.5 cut re-
moves more than half of the sample, which results in nearly a factor
of two degradation in the statistical constraints relative to what is
achievable with the full sample (σ(w) = 0.055). The degradation
is so severe because most of the objects removed by the cut are at
high redshifts.

Next, we examine the impact of wrong redshifts. As the last
column of Table 2 shows, wrong redshifts can be devastating to the
weak lensing constraints. The bias in w is, perhaps, tolerable only
in the Qest > 3.5 cases. In the other scenarios one can see that the
biases in w are greater than the 1σ constraints even with close to
98% correct redshifts (SSRT ! 0.98).

Comparing the 48600 secs and 16200 secs results we see that
the magnitude of the biases in w are set entirely by the spectro-
scopic success rate (SSRT), regardless of the level of complete-
ness. This is another reminder that the emphasis must be on accu-
racy over completeness.

We investigated the dependence of the results on the photo-z
estimator by performing the WL analysis with the neural network
photo-zs instead of the template photo-zs. The resulting biases inw
are shown in the third column of Table 3. Comparing to the fourth
column where we reproduce the template photo-z biases from Ta-
ble 2, we see that the magnitude of the bias is very similar for the
two photo-z estimators, despite difference in the photo-z error dis-
tributions of both (see e.g. Cunha et al. 2012).

We also tested the possibility of decreasing the biases by
culling photo-z outliers. In the presence of wrong spectroscopic
redshifts, the culling could remove not only catastrophic photomet-
ric redshifts, but perhaps also identify the wrong zspecs. We used
the nearest-neighbor error estimator, NNE (Oyaizu et al. 2008a), to
cull 10% of the sample selected as the galaxies with largest NNE

error, (eNNE). Since the fraction of objects to be culled was fixed,
the value of the eNNE cut varied for each catalog and photo-z es-
timator. The results are presented in the last two columns of Ta-
ble 3. For simplicity, we did not recalculate the fiducial constraints
when deriving the biases for the culled samples; given the quali-
tative nature of this analysis, this is a reasonable approximation.
The NNE cut seems quite effective for the neural network photo-zs,
typically reducing the biases by half. When the NNE culling was
applied to the template-fitting estimator, the effect was negligible
for the Qest > 3.5 case, and relatively small for the other cases,
suggesting that the NNE is only effective for identifying spectro-
scopic outliers when a training set based procedure is used. This
is by no means obvious since the NNE is very efficient at identi-
fying photo-z outliers even when template-fitting methods are used
(Oyaizu et al. 2008a). For comparison, we also tested the effect
of applying the same 10% cut using an error estimator from the
template-fitting code itself4. We find that the biases due to wrong
redshifts for theQest > 1.5, 2.5 and 3.5 cases are reduced to -0.41,
-0.086 and -0.014, showing that culling using this error estimator
is also beneficial. In contrast, note that, in Cunha et al. (2012), we
found that culling based on photo-z error estimates had little impact
on cosmological biases.

Finally, we investigated the dependence of the results on the
settings of our spectroscopic pipeline, described in Sec. 3.1. We
find that our fiducial settings, despite giving the best high redshift
completeness, yielded the largest biases in w, shown in the Table
2. The different settings yielded consistent trends, and we focus on
one particular case, that highlights the importance of the pipeline
settings. The Original setting for the pipelinehad a factor of two
smaller bias for the Qest > 3.5 sample. In the Original setting,
recall that only 6 templates were used. As can be seen by compar-
ing the right plot in Fig. 4 with Fig. 5, the 3 additional templates
increased the redshift completeness above z > 1.4 but resulted
in leakage from the high ztrue bins to low zspec bins. In particu-
lar, some galaxies at ztrue ∼ 0.9 were assigned zspecs of ∼ 0.5
and ∼ 0.7. This failure mode was responsible for about 2/3 of the
increase in bias in going from the Original to the Fiducial setting.
The remainder of the difference was due to the fact that the Fiducial
setting uses czguess = 1.6 which has the effect of increasing the
probability that a galaxy will be assigned a high redshift. As a re-
sult, the Fiducial setting yields zspecs above 1.5 for several galaxies
with ztrue < 0.8.

We conclude that the commonly adopted approach of max-
imizing the completeness is not recommended because it leads to
the increase of the fraction of wrong redshifts which in turn implies
worse dark energy parameter biases.

5.4 Spectroscopic selection matching: Weighting approach

In Section 5.3, we matched the selection of the spectroscopic and
photometric samples by culling the photometric sample. That is,
we selectively removed galaxies from the photometric sample so
that it statiscally matched, as closely as possible, the spectroscopic
sample. In this section we try a more agressive approach that allows
us to keep nearly the full photometric sample. Our technique is to
weight galaxies in the spectroscopic sample using the probwts
method of Lima et al. (2008) and Cunha et al. (2009), so that
the statistical properties of these weighted spectroscopic galaxies

4 The error estimate we use is the difference between the
Z BEST68 HIGH and Z BEST68 LOW outputs of the LePhare code.
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Conclusions	  

•  Incompleteness:	  
–  	  Does	  not	  introduce	  cosmological	  biases	  if	  selecCon	  matching	  is	  

performed.	  	  
–  StaCsCcal	  constraints	  suffer	  with	  reducCon	  of	  sample	  size.	  	  

•  Wrong	  redshi-s:	  
–  Cause	  severe	  biases.	  
–  Need	  bewer	  than	  99%	  correct	  redshiIs.	  
–  If	  99%	  accuracy	  not	  possible,	  need	  to	  calibrate	  spectroscopic	  error	  

distribuCon	  P(ztrue|zspec)	  with	  deeper	  sample/bewer	  instrument.	  

•  Moral	  of	  the	  story:	  Focus	  has	  to	  be	  on	  accuracy	  of	  derived	  
redshiIs.	  
	  



How	  can	  we	  get	  so	  many	  spectra?	  

ExisCng	  instruments:	  
-‐  VLT	  (8-‐m)	  
-‐  Magellan	  (6.5	  m)	  
-‐  Gemini	  (8-‐m)	  
-‐  Keck	  (10-‐m)	  

Planned:	  
-‐  PFS	  on	  Subaru	  (8	  m)	  
-‐  ngCFHT	  (8	  m)	  
-‐  IFU	  on	  WFIRST	  (2.5	  m)	  
-‐  GMACS	  (24.5	  m)	  



Calibrating  photo-‐‑z'ʹs  at  LSST  depth  is  limited  by  
incompleteness  in  redshift  surveys	

•  Even with instruments now being built, 
this will be extremely difficult from the 
ground at z>2, degrading DE FoM!

Redshift success rates from DEEP2 
(Newman et al. 2012), zCOSMOS 
(Lilly et al. 2009)!

Equivalent IAB for 30 nights	  
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Integral Field Spectroscopy Concept 

Row	  of	  Pupil	  Mirrors	  

Row	  of	  Slit	  Mirrors	  

λ	  

Telescope	  Focal	  
Plane	  

Slicer	  

Mirror	  	  

Array	  

3" x 3" with 0.15” slits 

Integral	  Field	  Unit	  (IFU):	  obtains	  a	  
spectrum	  at	  every	  point	  in	  its	  field	  
of	  view.	  	  A	  hybrid	  of	  photometry	  &	  
spectroscopy:	  an	  image	  at	  every	  
possible	  wavelength,	  or	  a	  spectrum	  
at	  every	  possible	  pixel	  of	  the	  image	  



Why  an  IFU  on  WFIRST?	

•  Get supernovae spectra while 
performing the imaging survey.!

•  But SN only takes up one pixel in IFU!

•  Use rest of IFU to get spectra!!

!

!

Imager	  

Focal	  Plane	  

IFU	  



Why  an  IFU  on  WFIRST?	

•  About 3000 sq degrees.!

•  few ×104 low-res spectra!

•  Extending LSST calibration 
beyond z~2 can improve FoM by 
30-40%.!

!

!

In	  collaboraCon	  with	  S.	  Perlmuwer,	  
J.	  Newman	  and	  C.	  Hirate	  



Part	  II	  -‐	  Angular	  selecSon	  issues	  



Strong	  angular	  dependence	  of	  photo-‐z	  scaoer	  
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The	  End	  


